
An Operating System Analog to
the Perl Data Tainting

Functionality

Dana M. Madsen

Overview

• Background

• The Tainting File System Concept

• Related Work

• Implementation Approach

Background

Recent Internet-Related Security Incidents

• Fast-Propagating Worms and Viruses
– ILOVEYOU and Melissa

• Trojan Horse Software
– Back Orifice 2000

• Flaws in Java and Active-X Security
– JVM type confusion vulnerabilities (Apr and Oct 1999)
– Bubbleboy virus exploiting flawed Active-X controls

Background (cont)

Conclusions from Recent Internet Security Incidents

• Security Depends on User Vigilance and Competence
– Scanning email attachments for viruses
– Judging whether downloaded software is safe
– Assessing whether Internet sites are safe to visit

• Incomplete O/S-Level Notion of Data Trustworthiness
– Trust is based on user identity, not the source of the data

• Hence Poor Protection Against Untrustworthy Data
– Untrustworthy code/data could trigger malicious actions
 with full permissions and identity of victim user

Tainting File System Concept

• Add a new file attribute reflecting trustworthiness

• If the file is executable:
Constrain the execution of that file

• If the file contains data:
Constrain the execution of all processes reading that file

• Enforce flexible policies governing how file trust
 attribute assigned and processes constrained

Primary Emphasis

Protect Inattentive or Unskilled Users who,

Without Malicious Intent,

Introduce Malicious Content into the File System

Any additional protection against malicious users is a positive side effect.

Tainting Complements Other
Security Technologies

Intended for Defense in Depth Strategy

• Added protection at O/S level for failures in:
– Firewalls and intrusion detection systems
– Application-level security mechanisms

• Unified trustworthiness policy at O/S level
– Underlies and undergirds all installed application software
– Reconciles different application-level policies and mechanisms
– Covers office productivity suites, browsers, sandboxes, etc.

Tainting Can Harden
Existing Security Techniques

Technique Augmented with Tainting

Generic Software
Wrappers

Sandboxing

Firewalls

Role-Based
Access Control

Security tailored to a specific combination of
user, resources, and data trustworthiness.

Helps contain security-related bugs in application
level sandboxes.

Added protection against malicious mobile code
that gets past the firewall.

Support policies limiting trusted roles to trust-
worthy files. Mark files modified by less trusted
roles as untrustworthy.

Tainting Impact on
O/S Trustworthiness

Effects on Existing
Applications

Trust-Based
Attacks

Existing applications may not react
well to constraints imposed based
on trustworthiness.

Non-robust applications especially
vulnerable. E.g., not checking for
errors returned by system calls.

Tainting creates new trust-based
“channels of influence” on processes.

E.g., maliciously constrain a process
by illicitly affecting file trust-
worthiness.

Reduce vulnerability by applying
least privilege principle to user
profiles.

Potentially Introduces Two New Security Issues

Low Degree of Vulnerability -- Situation-Dependent

Tainting and Traditional
MLS and Integrity Policies

• Bell-La Padula Confidentiality Model
– Tainting and classification are distinct concepts.
– Tainting software could be adapted to support a military security policy.

• Biba Integrity Model
– Tainting enforces a low water mark policy for subjects and objects.
– Also provides security functionality by constraining active processes.

Existing Concepts
Similar to Tainting

Concept Relation to Tainting

LOMAC
(Fraser et al)

Application
Level

Isolation
(Fayad et al)

LOMAC emphasizes the threat of malicious users, compromised
root daemons, and viruses. Tainting focuses on the inattentive
or unskilled user.

LOMAC enforces low water mark policy for subjects only.
Tainting covers subjects and objects.

Application-level scheme focuses on isolating untrustworthiness.

Tainting supports dynamic interaction between varying levels of
trustworthiness.

Implementation Approach

Overlay onto Existing Operating System
(No Source Code Modifications)

Applications

Tainting

Operating
System

(Linux)

Applications

Operating
System

(Linux)

Before After

Use Loadable Kernel Modules

Implementation Approach

ProcessFiles

Remote
Hosts

Other
Processes

File
Access

Network
Connections

IPC

IPC

Setting the File Trust Attribute
Requires Tracking the Conditions of File Creation/Modification

Must also Assign Trust to Processes and Network Connections

Implementation Approach

Trust List

Files

Remote
Hosts

File
Access

Network
Connections IPC

IPCProcess

Assign File Trust
Assign Process Trust
Constrain the Process

Intercepted system
calls effectively wrap
the process to provide a
“tainting environment”
for execution.

Assign/Enforce Trust by Intercepting System Calls

Other
Processes

Example Trustworthiness Policy

Files and Processes

Network Connections

No Network Connections

Trustworthy

Partially Trustworthy

Untrustworthy

Completely Untrustworthy

Trustworthy

Partially Trustworthy

Completely Untrustworthy

Levels of Trustworthiness
and Their Relationships

Example Constraints
on Active Processes

Trustworthy

Partially
Trustworthy

Untrustworthy

Completely
Untrustworthy

Any file created will by default have its “world”
permissions cleared.

• Granted same access as “world” to any file or directory
 stored on the user’s account.
• Data cannot be written to a completely untrustworthy
 remote host.
• Should not have suid capability.

Executes in “read-only” mode. Cannot create, delete,
write, or change permissions of files. Cannot write to
network connections. No suid capability.

Process is automatically and immediately halted.

Example Scenario

Resulting Trustworthiness

F P1 P2

File F is created by trustworthy process P1.

Partially trustworthy process P2 writes to F.

Trustworthy process P1 reads F.

Partially trustworthy process P1 attempts
action A (not allowed at this trust level).

Partially trustworthy process P2 opens a
network connection with untrustworthy host H.

Lighter gray shades
represent lower
trustworthiness.

Protecting Tainting
Functionality from Attack

Protect Loadable Kernel
Modules Used for Tainting

Securely Store the
File Trust Attributes

Applications

Tainting
Operating

System
(Linux)

Persistent
Storage

for Trust
Attributes

File

File

File

Two Major Requirements in Linux

Protecting Tainting
Functionality from Attack

No clear way to
distinguish between

authorized and
unauthorized

root-level users.

Root Can:
Load and unload
kernel modules.

Access any file in
the file system.

YET

The Challenge in Linux

Result: Malicious Root can Undermine Tainting

Protecting Tainting
Functionality from Attack

We Duck this Issue for Now!

• Tainting provides additional protection for
 inattentive or unskilled users.

• Present concept not specifically intended to
 defend against malicious users and intruders.

Conclusion

• Addresses deficiencies in general purpose operating systems
 used on the Internet.

• Gives added protection for inattentive or unskilled users.

• Is one element of a defense in depth strategy -- complements
 existing network security techniques.

• Future Work:
– Complete Linux implementation
– Port to Windows 9x/NT environment
– Improve support for tailoring the trustworthiness policy

Tainting ...

	Table of Contents
	Paper

